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BACKGROUND: In utero exposure to environmental chemicals can adversely impact pregnancy outcomes and childhood health, but minimal biomoni-
toring data exist on the majority of chemicals used in commerce.
OBJECTIVES: We aimed to profile exposure to multiple environmental organic acids (EOAs) and identify novel chemicals that have not been previ-
ously biomonitored in a diverse population of pregnant women.
METHODS:We used liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF/MS) to perform a suspect screen for 696 EOAs,
(e.g., phenols and phthalate metabolites) on the maternal serum collected at delivery from 75 pregnant women delivering at two large San Francisco
Hospitals. We examined demographic differences in peak areas and detection frequency (DF) of suspect EOAs using a Kruskal-Wallis Rank Sum test
or Fisher’s exact test. We confirmed selected suspects by comparison with their respective reference standards.
RESULTS: We detected, on average, 56 [standard deviation (SD)]: 8) suspect EOAs in each sample (range: 32–73). Twelve suspect EOAs with
DF≥ 60 were matched to 21 candidate compounds in our EOA database, two-thirds of which are novel chemicals. We found demographic differences
in DF for 13 suspect EOAs and confirmed the presence of 6 priority novel chemicals: 2,4-Di-tert-butylphenol, Pyrocatechol, 2,4-Dinitrophenol, 3,5-
Di-tert-butylsalicylic acid, 4-Hydroxycoumarin, and 2 0-Hydroxyacetophenone (or 3 0-Hydroxyacetophenone). The first two are high-production-
volume chemicals in the United States.
CONCLUSION: Suspect screening in human biomonitoring provides a viable method to characterize a broad spectrum of environmental chemicals to
prioritize for targeted method development and quantification. https://doi.org/10.1289/EHP2920

Introduction
Scientific evidence demonstrates that in utero exposure to multiple
environmental chemicals can adversely impact pregnancy out-
comes and lead to adverse health effects throughout the lifespan
(Diamanti-Kandarakis et al. 2009; National Cancer Institute 2010;
The American College of Obstetricians and Gynecologists 2013;
Wang et al. 2016). Over 30,000 pounds of industrial chemicals
were produced for every American in 2012 alone (Di Renzo et al.
2015; U.S. EPA 2013). Further, the U.S. chemical industry is
expecting faster growth in production volume in 2017 and 2018 in
comparison with 2016 (an overall growth of 3.6% in 2017 and
4.8% in 2018 in comparison with 1.6% in 2016) (The American
Chemistry Council 2016). The ubiquitous use of industrial chemi-
cals results in measurable levels found in pregnant women as a
result of their contact with contaminated food, water, air, soil, dust,
and consumer products. Furthermore, women of color and low-
income women in the United States can experience a higher fre-
quency and magnitude of exposure to environmental chemicals

and other stressors (Committee on Environmental Justice 1999;
Morello-Frosch and Shenassa 2006). The combination of both
chemical and nonchemical stressors can lead to adverse develop-
mental outcomes (Morello-Frosch et al. 2011; Vesterinen et al.
2017; Vishnevetsky et al. 2015). Based on an analysis of the nation-
ally representative National Health and Nutrition Examination
Survey (NHANES) data, we found previously that virtually all preg-
nant women in the United States are exposed to at least 43 different
chemicals (Woodruff et al. 2011). We have also found, in a smaller
study of 65 pregnant women in San Francisco, a median of ∼ 25
chemicals measured above detectable levels in maternal serum (out
of 59 compounds tested), and we detected the vast majority of these
chemicals (∼ 80%) in matched umbilical cord serum samples
(Morello-Frosch et al. 2016).

Existing biomonitoring researchmainly relies on targeted analyti-
cal chemistry methods, which measure only those chemicals selected
a priori for analysis (Dennis et al. 2017). Only a few hundred chemi-
cals are routinely measured in humans through targeted methods
(U.S. CDC 2017; Wang et al. 2016), which are resource and time in-
tensive to develop, whereas the potential number of chemicals to
which we are exposed is much higher, as 8,000 chemicals in com-
merce are manufactured or imported in >25,000 lbs=year (U.S. EPA
2016a). However, the lack of publicly available data on chemical
ingredients in industrial or commercial products in the United States
hinders our ability to prioritize chemicals for targeted biomonitoring
and exposure analysis. A more holistic approach that measures expo-
sures via biomonitoring in a high-throughput fashion is critical to
understanding the breadth of human exposure to the thousands of
chemicals used in commerce and the subsequent health consequences
of those exposures.

Advances in high-resolutionmass spectrometry offer an opportu-
nity to rapidly screen biological and environmental specimens for a
large array of chemicals (Andra et al. 2017; Dennis et al. 2017). This
screening allows better characterization of the chemical components
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of the “exposome,” defined as the totality of human environmental
exposures from conception onwards (Wild 2005). Both “suspect
screening” [e.g., (Chiaia-Hernandez et al. 2013; Plassmann et al.
2015; Rager et al. 2016)] and “nontargeted” [e.g., (Dennis et al.
2017; Schymanski et al. 2015; Sobus et al. 2017)] methods have
been used to analyze high-resolutionmass spectrometry data to com-
plement targeted biomonitoring approaches. Though both methods
acquire data in a nontargeted fashion, suspect screening differs from
the truly nontargeted analysis in that it searches for analytes against a
user-defined chemical database or existing chemical inventories,
paired with software-matching algorithms that make use of accurate
mass and isotope patterns. Nontargeted analysis does not search for
candidate compounds using such pre-specified lists of suspected or
targeted chemicals; hence, both data acquisition and analysis are
agnostic (Krauss et al. 2010; Rager et al. 2016; Schymanski et al.
2015). We have developed a suspect screening method that com-
bines nontargeted data acquisition using high-resolution mass spec-
trometry and targeted data analysis to screen for a subset of
environmental chemicals in human biological samples that we call
environmental organic acids (EOAs) (Gerona et al. 2017). EOAs
are environmental organic compounds with at least one ionizable
proton; many EOAs are widely used in consumer products (Dodson
et al. 2012; Rudel et al. 2011). Some EOAs (such as bisphenol-A
(BPA), methylparaben, and triclosan) have chemical structures that
are similar to hormones and thus have the potential to cause endocrine
disruption, which can negatively affect development (Diamanti-
Kandarakis et al. 2009;WHO/UNEP2012).

For this study,we apply our suspect screening approach to identify
novel EOA exposures during pregnancy in a racially and economi-
cally diverse population. Our goals are to: 1) identify potential multi-
ple chemical exposures, 2) determine whether these exposures differ
by race/ethnicity and socioeconomic status in our study population,
and 3) facilitate chemical prioritization for confirmation and targeted
method development. Ultimately, we seek to develop a computational
pipeline to identify high-priority chemicals for future targeted biomo-
nitoring among pregnant women and to better assess environmental
health disparities by race and income, and thereby improve efficien-
cies in the discovery of novel environmental chemicals for confirma-
tion andmeasurement in human biomonitoring studies.

Methods

Study Population
We analyzed serum samples from pregnant women participating
in the Chemicals in Our Bodies 2 Study (CiOB2), as part of
the UCSF Pregnancy Exposures to Environmental Chemicals
Children’s Center (Morello-Frosch et al. 2016). We recruited preg-
nant women from the Zuckerberg San Francisco General Hospital
(ZSFGH), which serves predominantly low-income women of
color who do not have health insurance, and UCSF Mission Bay
Medical Center (MB), which serves an economically and ethni-
cally diverse population, including women of higher socioeco-
nomic status. Eligibility criteria included: English- or Spanish-
speaking, age 18 through 40 y old, and singleton pregnancies that
were between 13 to 27 wk gestation (second trimester) at the time
of recruitment. Eligible patients were recruited at a routine sec-
ond trimester prenatal appointment, which included a request for
permission to access Personal Health Information from maternal
and infant medical records. Participants were interviewed, and
biospecimens (urine and blood) were collected at the clinic upon
enrollment or during a follow-up appointment. Between 1 March
2014, and 31 March 2016, 220 women enrolled in our study and
166 had delivered. Seventy-seven out of the 166 women agreed
to have their samples banked and included in supplemental stud-
ies. In the current study, we analyzed maternal serum collected at

delivery from 75 women whose banked maternal serum was
available at the time of analysis.

CiOB2 study protocols were approved by the Institutional
Review Boards of the University of California, San Francisco
and Berkeley (13-12160).

Suspect Screening Summary
Our suspect screen workflow comprised four steps: chemical analy-
sis, data processing, data analysis, and compound confirmation
(Figure 1). Briefly, we first performed a high-resolution mass spec-
trometry analysis of maternal serum (see Chemical Analysis) and
characterized the potential presence of 696 suspect candidates in our
EOA database (based on suspect features that are successfully
matched, by accurate mass, to candidate chemicals in our EOA data-
base, but not yet confirmed) (see Data Processing). Then, we selected
a subset of suspect candidates for confirmation based on a set of a
priori criteria (see Data Analysis) and confirmed the presence of a
suspect EOA if the LC-QTOF/MS resultsmatched those of its corre-
sponding reference standard (seeCompoundConfirmation).

Chemical analysis. Sample preparation. We analyzed 75
banked (−80�C) serum samples from pregnant women participat-
ing in the CiOB2 Study. We thawed 250 lL of each serum sample,
spiked it with 2:5 lL of 1 lg=ml internal standards [2:5 ng BPA-
d16, 2:5 ng C-13 Monobenzyl phthalate, 2:5 ng C-13 Mono-(2-
ethylhexyl) phthalate], and centrifuged it at 3,000 rpm for 10 min
before preparing it for LC–QTOF/MS by solid phase extraction
(SPE) using Waters Oasis HLB cartridge (10 mg, 1 mL). We
washed each SPE cartridge with five column volumes of methanol
to eliminate possible environmental chemical contamination and
then activated the cartridge with water before loading 250 lL of
serum. We then washed the column with 5% methanol before elut-
ing each analyte by methanol. We evaporated the methanol eluates
under a stream of nitrogen gas, then reconstituted them in 250 lL
of 10%methanol for column injection.

LC–QTOF/MS Instrumental Analysis. Separation of analy-
tes in each sample was achieved by LC using an Agilent LC 1260
(Agilent Technologies). A 50 lL aliquot of the extract was used for
each of the duplicate injections of the sample into anAgilent Poroshell
120 C18 column (2:1 Å 100 mm, 2:7 lm) maintained at 55°C.
Chromatographic separation of the analytes was achieved by gradient
elution using water with 0.05% ammonium acetetate (pH=7:8) as
mobile phase A and methanol with 0.05% ammonium acetate
(pH=7:8) asmobile phaseB.The use of higher pHaids in further ion-
izing acidic compounds, thus enhancing the sensitivity of the assay.
The elution gradient employed was: 0–0.5 min, 5% B; 1.5 min, 30%
B; 4.5min, 70%B; 7.5–10min, 100%B; 10.01– 14min, 5%B.

The LC system was connected to an Agilent QTOF/MS 6550,
which collects both accurate mass precursor ion and product ion
scans using anAgilent Jetstreamelectrospray ionization source oper-
ated in the negative polarity, a mode that facilitates better ionization
of acidic compounds such as environmental organic acids. The
QTOF/MS was run under the following conditions: gas temperature
at 255°C; sheath gas temperature at 350°C; drying gas flow at
14 L=min; sheath gas flow at 11 L=min; nebulizer pressure at
14 psi; voltage cap at −2,500V; and, nozzle voltage at −1,500V.
Data acquisition was run at 2 GHz in extended dynamic rangemode.
A TOF-MS scan across the range of 80–600 m=z was collected at
high resolution for eluates coming out of the LC from 0.5–12 min.
Using the Auto MS/MS mode (information-dependent acquisition),
a product ion scan (MS/MS) of the three most abundant peaks at
high resolution was triggered each time a precursor ion with an
intensity of ≥500 counts per second was generated in the TOF-
MS scan; active exclusion of previously selected peak was held
for 0.1 min. The LC–QTOF/MS run produces a total ion chromat-
ogram for each sample, which includes the following: the
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accurate mass of each unique compound (expressed as m/z of
their corresponding anion), peak area, and retention time (RT)
and spectral data on the parent ion (compounds) and fragment
ions, including isotopic pattern.

Blank samples. Along with the samples, we included two sets
of blanks: solvent blank (consisted of only the mobile phase solu-
tion, also called double blank) and matrix blank (synthetic human
serum that has undergone the same analytical process as the sam-
ples). Each batch runs seven solvent blanks and six matrix blanks.
The analytic chemist in our team performed visual inspections of
chromatogram peaks and excluded mass features that appeared in
either blank. Because nontargeted data acquisition collects all
accurate masses in a given sample, the matrix blank provided the
indication of potential contamination in the analytical method.

Quality assurance.Wespiked several labeled internal standards
in each sample and into thematrixblank tonormalizeeach run.Twoof
these internal standards consistently showed up in each sample: C13-
Monobenzyl phthalate and C13- Mono 2-ethylhexyl phthalate.
Because 50 uL of serum extract was used for sample analysis, there
wereRT shifts for somemass features across batch runs as the column
aged. Each column was retired when more than 0.3 min in RT shift
was observed in the internal standard. Because this is a screening
method that collects all accuratemasses in a sample and not a targeted
method, the analysts have no basis for the appropriate compounds and
their levels to use as quality control (QC) samples. Accordingly, no
QC sampleswere used in this particular batch of sample analysis.

Data processing. Suspect database of EOAs. Our suspect
database of EOAs (referred to EOA database throughout) had

696 entries and included chemicals from the following classes:
phenols, such as parabens; phenolic and acidic pesticides and their
predicted acidic and phenolicmetabolites (referred to as “predicted
pesticide metabolites” throughout the remaining of this paper); per-
and polyfluoroalkyl substances (PFAS); phthalate metabolites; phe-
nolic metabolites of polybrominated diphenyl ethers (OH-BDEs)
and polychlorinated biphenyls (OH-PCBs).We generated predicted
pesticide metabolites from relevant parent compounds by applying
two common biological transformations that occur from metabo-
lism: (1) hydroxylation of aromatic ring leading to the formation of
phenolic metabolite, and (2) hydrolysis of carboxylic, phosphonic
and sulfonic esters leading to the formation of their corresponding
acids (Parkinson andOgilvie 2010). Each entry in the EOAdatabase
included themolecular formula, chemical name, and class.We com-
piled the EOA database using the following data sources: the U.S.
EPA’s (U.S. Environmental Protection Agency) Toxic Substances
Control Act Inventory (U.S. EPA 2016b), ToxCast Chemicals (U.S.
EPA 2010), and High Production Volume (U.S. EPA 2012b), U.S.
EPA Inventory Update Reporting (U.S. EPA 2006) and Chemical
Data Reporting (U.S. EPA 2012a) chemical lists; the NHANES
2009 biomonitoring chemicals list (U.S. CDC 2009); the TEDX
List of Potential Endocrine Disruptors (The Endocrine Disruption
Exchange 2011); the California Environmental Protection Agency’s
Proposition 65List of Chemicals (Office of Environmental Health
Hazard Assessment 2010) and Pesticide Use Reporting (PUR)
database (California Department of Pesticide Regulation); and
the Agilent Pesticide Personal Compound Database and Library
(Agilent Technologies).We performed additional PubMed literature

Confirm selected candidates 
by comparing to standards 

(LC-QTOF/MS)

Analysis Steps
(tools/methods used) Output/Results

Mass chromatograms

5317 suspect peaks (248 
unique chemical formulas)

4610 suspect peaks (233 
unique formulas)

455 suspect features matched 
to 282 suspect candidates 

(4236 suspect peaks from 230 
unique formulas)

20 suspect candidates with 
available standards 
(16 unique formulas)

6 EOAs confirmed 
with level-1 confidence 

(Schymanski et al. 2014) 
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Figure 1. Suspect screening workflow and corresponding output/results using LC-QTOF/MS for detecting environmental organic acids (EOAs) in 75 serum
samples collected at delivery.
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searches of environmental chemical biomonitoring studies published
between 2000 and 2012 using specific terms such as “bisphenol,”
“environmental phenol,” “phthalatemetabolite,” and “perfluorinated
compound.”TheEOAdatabase is available in the supplementaryfile
(Excel Table S1) and in the EPA’s CompTox Chemistry Dashboard
(https://comptox.epa.gov/dashboard/chemical_lists).

Find-by-formula algorithm.We used the AgilentMassHunter
Qualitative Analysis software (version B.06.00) Find-by-Formula
(FBF) algorithm to analyze output data from the LC- QTOF/MS,
using a set of optimized parameters previously reported (Gerona
et al. 2017) (Table 1). We generated a list of suspect peaks ―
chromatogram peaks whose accurate masses (acquired in the LC-
QTOF/MS chemical analysis) matched the exact masses of candi-
date chemicals (based on chemical formulas) in the EOA database,
accounting for the ionizationmode (i.e., formation ofM-H)with tar-
get score of 70 as the threshold. Because our LC-QTOF/MS analysis
can detect several chromatogram features with the same mass (iso-
mers) in maternal serum, one unique chemical formula from our
EOA database might be matched to either one or many features in
the total ion chromatogram generated from the LC-QTOF/MS anal-
ysis. For the chemicals that are isomers in our EOA database, we
assigned equal probabilities to the mass feature being any one of the
matched candidate chemicals in the database. We called a feature a
“mass match” when it was successfully matched to a chemical for-
mula from the EOA database. We did not include acetate adducts in
our analysis to reduce the number of false positives.

Total ion chromatogram (TIC) peak review.We performed
visual reviews of total ion chromatogram (TIC) peaks to remove
707 (13%) suspect peaks that (1) had poor peak shape (e.g., very
broad peaks, peaks with multiple shoulders, peaks with signal-to-
noise (S/N) <3), or (2) had peak areas ≤1:10 times the maximum
observed peak area in the solvent or the double blanks.

Isomer distinction. As noted earlier, isomers are compounds
with the same chemical formula but differ in chemical structure.
Because RTs depend on chemical structure, isomers detected in the
LC-QTOF/MS will have the same accurate mass but different RTs.
Thus, we used a custom R script to distinguish between isomers
from the chromatogrampeaks of all individual samples. TheR script
clustered mass matches into isomer groups based on RT, i.e.,
realigning suspect features (available in the supplementary file,
Isomer_distinction_R_script.txt). Briefly, wefirst ranked all suspect
peaks by chemical formula, then RT. We considered a suspect peak
to be from a different isomer if its RT differed from the RT of the
same chemical formula in the previous row by more than 0.16 min.

Cutoff points ranging from 0.15 to 0.20 with a 0.01 increment were
tested, and 0.16 allowed the best distinction based on graphical ex-
amination. For isomers that could not be correctly separated using
this method (usually isomers with similar structures and thus very
similar RTs), we consulted the analytical chemists on the research
teamwhenever therewere questions on theRT shift ofmass features
observed across samples, visualized data in both the Agilent soft-
ware and R, and assigned isomer groups manually per batch. After
isomer grouping, one “suspect feature”will represent a group of sus-
pect peaks with the same chemical formula and similar RTs. The
detection frequency of a suspect feature will be the number of sus-
pect peaks in this group. When no isomers are present, suspect fea-
ture and “suspect candidate” are equivalent. In the case of the 180
isomers in our EOAdatabase,multiple candidate chemicals with the
same formula can be matched to either one (if only one isomer was
detected in maternal serum) or many suspect features (if >1 isomer
was detected). Figure S1 shows an illustration of the many (suspect
features)-to-many (suspect candidates)matching for the latter case.

Statistical analysis. Summary list of highly detected suspect
EOAs.Wecompiled a list of suspect features that had detection fre-
quency (DF) ≥60 (80% of the participants) to identify those chemi-
cals that were more likely to be present in our study population
(Table 2). Based on the suspect candidates that these features were
matched to, we searched the candidates against the list of chemicals
currently being biomonitored by the NHANES (as of April 2016)
(U.S. CDC 2015) or the California Environmental Contaminant
Biomonitoring Program (also known as Biomonitoring California)
(Biomonitoring California 2015), or chemicals that were of high
production volume in the United States (i.e., being manufactured in
or imported into the United States with an aggregate volume of 1
million pounds ormore per year) (U.S. EPA 2012b).

Demographic differences. As part of prioritizing suspect fea-
tures for confirmation, we evaluated which suspect features appeared
to differ by demographic variables, including race/ethnicity, educa-
tion, household income, and nativity (U.S.-born status). Thirty-three
participants hadmissing values in the nativity variable;we considered
them to be born in the United States if the difference between their
age and the reported years lived in the United States was one year or
less. Using this imputation approach, we were able to include data on
an additional 115 suspect features detected in two participants in the
analysis.We included observations withmissing nativity information
in all analysis except for when we evaluated difference by nativity
(N=44) in detection frequency or peak area.

We used the chromatogram peak area to evaluate demographic
differences in concentration semiquantitatively for suspect features
detected in ≥80% of participants. The chromatogram peak area, as
integrated by the Agilent Qualitative Analysis software, is a func-
tion of both the absolute concentration and ionization efficiency of
an individual compound. It can be roughly used to compare the
concentration for the same compound across samples and across
batches. As the peak area may also depend on matrix effects that
could manifest in ion suppression in human sample extracts, we
used the nonparametric Kruskal-Wallis Rank Sum test to compare
the rank orders of the peak area values (instead of the actual values)
in assessing differences by demographic variables.

For suspect features detected in <80% of participants, we used a
Fisher’s exact test to examine differences in detection by demographic
category.We limited this analysis to compounds that were detected in
at least 20%of participantswith nonmissing values for a certain demo-
graphic variable. We restricted analysis by race/ethnicity to whites,
Latinas, and Asians as there were only four African Americans
(with a total of 240 suspect peaks) and one participant (with 55
suspect peaks) who identified herself as “nonHispanic other.”

We also calculated adjusted p-values to correct for multiple hy-
pothesis testing for each demographic comparison (separately for

Table 1. Agilent Find-by-Formula algorithm parameters used in suspect
screening.

Tab Criteria used

Options
Formula Source Database/Library: Environmental Organic

Acid suspect database
Maximum number of matches per formula: 1
Check “Automatically increase for isomeric
compounds”
Values to match: Mass

Formula Matching Masses: + =− 10:00 ppm
Negative Ions Check only “-H”

Charge state range: 1
Scoring Contribution to overall score

Mass score: 100
Isotope abundance score: 60
Isotope spacing score: 50

Results Chromatogram and Spectra
Check “Extract EIC”
Check “Extract cleaned spectrum”

Result Filters Warn if score is <75:00
Do not match if score is <70:00
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peak area or detection frequency comparisons) using the Benjamini-
Hochberg procedure (i.e., the false discovery rate method) at a pre-
specified alpha level of 0.1 (due to the limited sample size)
(Benjamini and Hochberg 1995). Isomer distinction and statistical
analysis were performed using R (version 3.3.3; R Core Team).

Chemical prioritization criteria. The goal of this step was
to prioritize and select suspect candidates based on a set of a pri-
ori criteria for compound confirmation to identify novel EOAs
that have not been biomonitored. We applied three major steps.
First, we ranked the suspect candidates based on the detection
frequencies of their corresponding suspect features and gave a
higher priority if the corresponding suspect feature differed by
demographic characteristics in peak area or detection frequency.
Then, we excluded suspect candidates that were phthalate metab-
olites because most of the matched phthalate metabolites have
been biomonitored by NHANES or the California Biomonitoring
program. We also excluded suspect candidates that were predicted
pesticide metabolites for the current analysis because (1) their
commercial standards are not available (due to the difficulties in
identifying their chemical names and structure), through searching
literature for some pesticide metabolites, or (2) the actual metabo-
lite of some pesticides may not be the ones included in our EOA
database. We presented information for suspect features matched
to these pesticide metabolites for completeness and for the broader
research community. Finally, we obtained additional information
on the remaining suspect candidates of the detected suspect fea-
tures according to their rank order by search the following database
or resources: (1) list of chemicals currently being biomonitored in
NHANES (U.S. CDC 2015) or the Biomonitoring California pro-
gram (Biomonitoring California 2015); (2) U.S. EPA’s CPCat
(Chemical and Product Categories) database (Dionisio et al. 2015;
U.S. EPA 2014) for their usage information; (3) high-production-
volume chemical list in the United States (U.S. EPA 2012b); and
(4) PubChem Substance and Compound database (Kim et al.

2016) for their safety and hazards and toxicity information. We did
not select suspect candidates that are currently being biomonitored,
not used in consumer products (e.g., endogenous humanmetabolites
such as sex hormones), or classified as Group E (Evidence of
Noncarcinogenicity for Humans) for carcinogenicity.

We purchased available chemical reference standards for fur-
ther confirmation. Vender information for the reference standards
is presented in Excel Table S2.

Compound confirmation. We confirmed the presence of sus-
pect EOAs by re-running the LC-QTOF/MS analysis with their
corresponding reference standard. A suspect EOA was consid-
ered confirmed (present in maternal serum) with level-1 confi-
dence in identification (Schymanski et al. 2014) if it had the same
RT, accurate mass, and MS/MS spectral pattern as the LC-
QTOF/MS results for the reference standard. At least two MS/
MS spectral fragments were used to confirm similarity in frag-
mentation pattern. In the case of isomers, we compared the RT,
accurate mass, and MS/MS spectral pattern of all suspect EOAs
with the same formula to the reference standard results. All the
remaining suspects were assigned a level-3 confidence in identifi-
cation as tentative candidate(s) (Schymanski et al. 2014).

The processed dataset used in this study is available via the
ImmPort database (accession: SDY1363).

Results

Description of the EOA Database
Of the 696 EOAs included in the database, predicted pesticidemetab-
olites (51.1%) and phenols (24.1%) made up the majority, whereas
PFAS (7.0%), acidic pesticides (6.3%), phthalate metabolites (5.6%),
phenolic pesticides (2.3%), OH-BDEs (1.7%), and OH-PCBs (1.7%)
made up the rest (Figure 2A). Of the EOAs in the EOA database, 516
(74%) had unique molecular formulas, but 180 of the EOAs were

Table 2. List of suspect features that were detected in greater than 80% of maternal serum samples collected at delivery (N=75).

Suspect features identified after FBF Information on matched suspect candidates in EOA database

Chemical formula RT (mean) DF Isomersa Names Chemical class NHANESb CAc HPVd

C8HF17O3S 5.502 75 0 Perfluorooctane sulfonic acid (PFOS) Per- and polyfluoroalkyl substances
p p

C14H22Od 6.719 74 4 2,4-Di-tert-butylphenol (2,4-DTBP) Phenols
2,6-Di-tert-butylphenol (2,6-DTBP) Phenols
4-Octylphenol Phenols
4-tert-Octylphenol Phenols

p p
C10H14O2e 4.029 70 0 4-Butoxyphenol Phenols
C7H8O 1.999 70 2 2-Methylphenol Phenols

p
4-Methylphenol Phenols

p
C8H8O3e 1.931 66 3 2,4-Dihydroxyphenone Phenols

Methyl paraben Phenols
p p p

Phenoxyacetic acid Acidic pesticides
C15H22O3 5.132 64 0 3,5-Di-tert-Butylsalicylic acid Phenols
C9H12O2 4.553 64 2 2-Isopropoxyphenol Phenols

p p
4-Propoxyphenol Phenols

C11H14O2e 5.129 63 0 Methyl eugenol Phenols
C12H17NO3 3.977 63 0 Promecarb metabolite Predicted pesticide metabolites *

C16H22O4 4.773 63 3 Mono-2-ethylhexyl phthalate (MEHP) Phthalate metabolites
p p

Monoisooctyl phthalate Phthalate metabolites
Monooctyl phthalate (MOP) Phthalate metabolites

p
C12H15NO4 1.119 61 0 Carbofuran metabolite Predicted pesticide metabolites *

C16H26O2e 6.153 61 0 Octylphenol monoethoxylate Phenols

Note: EOA, environmental organic acid; FBF, find-by-formula; DF, detection frequency; RT, retention time (in minutes); NHANES, National Health and Nutrition Examination
Survey; HPV, high production volume.
aNumber of isomers based on EOA chemical database.
bCurrently biomonitored by NHANES.
cCurrently biomonitored by the Biomonitoring California Designated Chemical list (October 2015), http://biomonitoring.ca.gov/sites/default/files/downloads/DesignatedChemicalsList_
October2015.pdf.
dChemicals being manufactured and/or imported into the U.S. with an aggregate volume of 1 million to 10 million pounds/year, according to the U.S. HPV list by the U.S.
Environmental Protection Agency (2004), https://iaspub.epa.gov/sor_internet/registry/substreg/list/details.do?listId=74.
eCompounds that showed potential differences in peak area (semi-quantification of a chemical) by demographic variables based on raw p-values.
*Parent compounds promecarb and carbofuran are HPV chemicals.
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isomers (compounds with the same molecular formula but with dif-
ferent chemical structures). The number of isomeric forms present in
the EOA database ranged from 2 to 6 (55 EOAs have 1 other isomer
in the database, 10 have 2, 6 have 3, 2 have 4 and 1 has 5). Twenty-
five EOAs (corresponding to 9 unique chemical formulas) in the
EOA database had an isomer that was of a different chemical class
and thus were recategorized as “multiple chemicals classes” (see
Table S1 for a list of chemical formulas, compound names, and chem-
ical classes for these EOAs). Phthalate metabolites and phenols had a
higher percentage of isomers (46% and 21%, respectively) than the
other chemical classes (ranging from 0% for OH-BEDs to 10% for
OH-PCBs) (Figure 2B).

Participant Characteristics
One-third (n=25) of our participants obtained care at ZSFGH
and the balance (n=50) from MB. The majority of women were
Latinas or nonHispanic whites and were married or cohabitating.
About half of the participants had high socioeconomic status
(45% having postgraduate education and 57% having an annual
household income ≥$80,000). Nine participants (out of 44 who
answered the question regarding nativity) indicated that they
were born outside of the United States. Latina women, women
with some college education or college degree (in comparison
with women with high school or less education or women with a
postgraduate degree) or women with lower household income (in
comparison with women with an annual household income
≥$80,000), had fewer suspect EOAs detected in serum (Table 3).

Detection Frequencies of Suspect EOAs
We obtained 5,317 initial suspect peaks for 248 unique chemical for-
mulas after using the FBF algorithm (Figure 1). Based on our isomer
distinction method, we successfully assigned isomer grouping for
3,043 (66%) out of 4,610 post-TIC-peak-review suspect peaks. We

used R and Agilent MassHunter Qualitative Analysis to visualize
data and consulted the analytical chemists on our research team for
the remaining 1,567 suspect peaks that needed further examination,
and through this process assigned isomer groups for 1,193 out of the
1,567 remaining suspect peaks. The final analytical sample consisted
of 4,236 (92%) suspect peaks that made up 455 suspect features. An
overview of the 455 suspect features by RT and mass is included in
the Supplemental Figure S2.We detected, on average, 56 (SD: 8) sus-
pect features in each woman (range: 32–73). The majority of the
detected suspect features were phenols (43.0%) and predicted pesti-
cide metabolites (22.6%), followed by phthalate metabolites (17.0%),
chemicals belonging to multiple chemical classes (6.8%), PFASs
(5.2%), phenolic pesticides (2.7%), and acidic pesticides (2.6%)
(Figure 3), based on chemical classes of their matched suspect candi-
dates.We detectedmore suspect features that were phenols or phthal-
ate metabolites than expected based on the chemical class
composition of our EOA database, possibly because there are more
isomers in these two chemical classes than in other classes (Figure
2B). Yet, we detected fewer than expected pesticide metabolites
[comparing 23% (actual detection) with 51% (expected)]. We did not
detect suspect features that wereOH-BDEs orOH-PCBs.

The DF distribution of 455 suspect features was right-tailed, with
174 suspect features being detected in only one participant, 89 suspect
EOAs with DF≥ 15 and 32 suspect features with DF≥ 38. There
were 12 suspect features with DFs≥ 60 that were matched to 21 can-
didate chemicals in the EOAdatabase (Table 2). Based on external in-
formation from NHANES and the California Biomonitoring
program, 15 out of these 21 suspect candidates have not been previ-
ously biomonitored by either of these two programs (Table 2).

Difference by Demographic Characteristics
We observed no clear visual clustering of the log-transformed
(base 2) and scaled-by-compound peak area values of 89

Figure 2. Composition of environmental organic acid (EOA) database: (A) Number of compounds (N=696) by chemical class; (B) Isomer composition by
chemical class (590 unique formulas).
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(DF≥ 15) suspect EOAs by race/ethnicity, education, or house-
hold income (Figure 4). When 12 suspect EOAs with DF≥ 60
(listed in Table 2) were examined on an individual basis, we found

differences in peak areas by education for four suspect EOAs and
by income for one suspect EOA, but the p-values were not signifi-
cant after correcting for multiple testing (Figure S3). Among

Table 3. Characteristics of pregnant participants from the Chemicals in Our Bodies 2 Study. (Morello-Frosch et al. 2016) (N=75).

Characteristics

Descriptive statistics

Suspect EOAs detected per women, mean (SD)Mean (SD) N (%)

Age 33.3 (4.6)
Race/ethnicity
Latina 26 (35) 53 (7.6)
Non-Hispanic white 29 (39) 57 (7.9)
Non-Hispanic Asian 12 (16) 60 (7.7)
Non-Hispanic African Americans 4 (5) 60 (10.6)
Non-Hispanic other 1 (1) 55 (-)
Missing 3 (4) 58 (5.7)
Marital status
Married/cohabitating 63 (84) 57 (7.6)
Separated/divorced 4 (5) 50 (9.1)
Never married 5 (7) 51 (11.5)
Missing 3 (4) 58 (5.7)
Education
High school or less 18 (24) 57 (6.6)
Some college/college completed 19 (25) 53 (10.7)
Post-graduate 34 (45) 58 (6.6)
Missing 4 (5) 56 (7.0)
Household income
<$20,000 15 (20) 54 (9.2)
$20,000–$79,999 14 (19) 54 (9.0)
≥$80,000 43 (57) 58 (7.1)
Missing 3 (4) 58 (5.7)
Nativity (Born in the United States)a

Yes 35 (47) 57 (7.3)
No 9 (12) 57 (11.1)
Missing 31 (41) 56 (8.0)
Years lived in the US 24.0 (12.7)
aTwo observations with missing values were imputed based on participant’s age and the reported years lived in the United States.

Figure 3. Detections of suspect environmental organic acids (EOAs) among 75 pregnant women: (A) detections for each participant by chemical class, (B) dis-
tribution of detections by chemical class.
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Figure 4. Visualization of peak area values (log transformed and scaled by compounds) of 89 suspect environmental organic acids (detection frequency≥15),
annotated by race/ethnicity, education, household income, and chemical class.
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compounds with DF<60, we found that 13 suspect EOAs differed
in DF by at least one of the three demographic variables: race/eth-
nicity, household income, or education, after multiple compari-
son adjustments (Table S2). One suspect EOA [formula:
C6H4Cl2O, RT: 4.07, matched chemicals: 1,4-Dichlorobenzene
metabolite, 2,3-Dichlorophenol (2,3-DCP), 2,4-DCP, 2,5-DCP,
2,6-DCP, or 3,4-DCP)] showed a difference in DF by all three de-
mographic variables. None of the suspect EOAs differed by na-
tivity status.

Prioritization and Confirmation of Selected Compounds
We first selected 25 suspect features (40 matched suspect candi-
dates and 23 unique formulas) whose corresponding compounds
had DF≥ 60 (Table 2) or that differed by demographic variables
(Figure S3 and Table S2). After excluding candidates that were
phthalates or predicted pesticide metabolites (14 candidates), we
prioritized 14 suspect candidates for chemical confirmation after
evaluating information on chemical use and production, potential
toxicity, and whether compounds had been measured in prior
biomonitoring studies such as NHANES or the California
Biomonitoring program. We persued further confirmation for 11
candidates (8 unique formulas) whose reference standards were
available at the time and confirmed the presence of four novel
(not previously biomonitored) EOAs: 2,4-Di-tert-butylphenol
(2,4-DTBP), 3,5-Di-tert-butylsalicylic acid, 2,4-Dinitrophenol
(2,4-DNP), and 4-Hydroxycoumarin. The remaining seven sus-
pect EOAs were not confirmed, either because they did not have

the same profile (same RT and MS/MS spectral pattern) or they
were not detected in the confirmation QTOF/MS analysis even
after spiking and running them in drug-free serum at high concen-
tration. We then repeated this process for the remaining suspect
candidates with DF≥ 20, and we confirmed an additional two
novel EOAs: Pyrocatechol and 2 0-Hydroxyacetophenone (and/or
its isomer 3'-Hydroxyacetophenone). Isomeric compounds 2 0-
Hydroxyacetophenone and 3'-Hydroxyacetophenone have very
close structures and cannot be distinguished by RT solely in the
current LC-QTOF/MS analysis. Compound structure and the
corresponding extracted ion chromatograms for the confirmed
chemicals and list of 20 suspect EOAs (16 unique formulas)
selected for confirmation can be found in the Supplemental
Material (Figure 5 and Table S3, respectively). A full list of 455
detected suspect features, their matched suspect candidates, and
detailed information on prioritization can be found in Excel
Table S2.

Discussion
We used a suspect screening approach to characterize the pres-
ence of EOAs in pregnant women’s serum. We detected an aver-
age of 56 (range: 32–73) suspect features with mass matched to
EOAs in maternal serum. Twelve highly detected suspect fea-
tures were matched to 21 candidate chemicals in our EOA data-
base; two-thirds of these 21 candidates have not been previously
biomonitored. Thirteen suspect features differed in detection fre-
quency by demographic characteristics. After confirmation, via

Figure 5. Extracted ion chromatograms for six confirmed compounds (with red arrow pointing to the corresponding peak).
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comparison with reference standards, of 20 suspect candidates,
we confirmed the presence of six novel EOAs in our sample, two
of which ― 2,4-DTBP and pyrocatechol ― are of high pro-
duction volume in the United States, with national aggregation of
production volumes of 10 million to 50 million pounds per year
(U.S. EPA 2017).

Five out of six confirmed novel EOAs have product-use infor-
mation in the U.S. EPA’s Chemical and Product Categories
(CPCat) database (Dionisio et al. 2015; U.S. EPA 2014), and they
have been used in manufacturing (e.g., chemicals and chemical
products), pharmaceuticals, consumer products (e.g., cosmetics),
and pesticides (Table 4). People can be exposed through eating
contaminated food, drinking contaminatedwater, or breathing con-
taminated air. For example, 2,4-DTBP is an antioxidant widely
used in food-related plastic products (Paquette 2004) and is found
to be the most widely detected estrogenic compound (measured by
estrogen equivalence concentration) leaching into drinking water
from plastic pipes (Kelley et al. 2014; Liu et al. 2017; Löschner
et al. 2011; Lund et al. 2011). European researchers also found 2,4-
DTBP to be amajor migrant in water from bottles or electric kettles
made of polyolefin, polypropylene, Tritan™, or silicone, the latter
three of which are substitutions for the polycarbonate baby bottles
that contained the polycarbonate monomer BPA (Onghena et al.
2014; Skjevrak et al. 2005).

Evidence of the potential health risks associated with the major-
ity of these confirmed compounds is lacking except for 2,4-DNP
and pyrocatechol. Due to its harmful effect (cataract formation), the
U.S. Food and Drug Administration banned 2,4-DNP from use for
weight control in 1938 [ATSDR (Agency for Toxic Substances and
Disease Registry) 1995]. It is also suspected of causing genetic
defects and of damaging fertility and the fetus (Japan National
Institute of Technology and Evaluation – Chemical Management
Center) and can result in death due to occupational exposure
(ATSDR 1995). Pyrocatechol, often known as catechol, has been
classified as a possible human (Group 2B) carcinogen by the
International Agency for Research onCancer (IARC) (IARC1999).
However, the U.S. EPA has not classified catechol with respect
to potential carcinogenicity (U.S. EPA 2000). We found limited
information on chemical properties, bioactivities or health
impact of 3,5-Di-tert-butylsalicylic acid, 4-Hydroxycoumarin,
2 0-Hydroxyacetophenone, and 3 0-Hydroxyacetophenone using
the U.S. EPA’s CompTox Chemistry Dashboard (U.S. EPA

2017). This finding suggests that the current suspect screening
approach can indeed provide new insights regarding human
exposures to the “known, unknown” chemicals ― chemicals
that are unknown to an investigator but that are contained within
a reference database or literature source (McEachran et al. 2017).

There are several limitations to our study. The first challenge,
which is also common to nontargeted metabolomic research, is the
transition from detected suspect features (mass peaks) to confident
chemical (metabolite) annotations. During the “find-by-formula
(mass)” or the annotation step, the matching of a detected suspect
feature to a specific candidate chemical is solely based onmass (and
isotopic pattern), potentially resulting in multiple candidates being
matched to the same suspect feature and multiple suspect features
being matched to the same candidate simultaneously, i.e., many
(suspect features)-to-many (suspect candidates) match as illustrated
in Supplemental Figure S1. Thus, it is possible that the confirmed
compound turns out not to be the suspect feature of primary inter-
est, but its isomer. For example, the primary suspect feature of in-
terest (chemical formula: C8H8O2, RT: 1.04 min) has a DF of
54. However, the confirmed isomers 2 0-Hydroxyacetophenone
(and/or 3 0-Hydroxyacetophenone) have RTs of 3.3, which were
matched to another suspect feature with the same formula but
low detection (DF= 1). Also, we cannot rule out the possibility
that an unconfirmed suspect feature is, in fact, an isomer that is
not included in our current EOA database or an endogenous
metabolite that is an isomer of the candidate EOA listed in our
database. Although our method is optimized for acidic com-
pounds, a few neutral organic compounds and their metabolites
may also not be ruled out among these possibilities.

Another limitation of our suspect screening method is the rela-
tively lower sensitivity of the LC-QTOF/MS for detecting environ-
mental chemicals with low concentrations in blood. Thus, some
chemicals with relatively lowDF based on the QTOF/MS could, in
fact, be more widespread in our study population. To increase the
sensitivity of EOA detection in our current study, we increased the
injection volume of serum extract (50 uL, in comparison with typi-
cal volume of 1–2:5 uL). However, this approach can result in RT
drift, i.e., peaks being broader in width with more tailing, which
could affect peak identification and isomer grouping. In the present
analysis, we performed visual peak review to remove features that
had poor peak shapes. We also discarded some suspect peaks
where there were a big RT drift and isomer grouping deemed

Table 4. Summary of the confirmed compounds and their uses from suspect screening of pregnant women (N= 75).

Name (DF in our sample) Casrn CPCat use categoriesa

2,4-Di-tert-butylphenol
(2,4-DTBP)b (DF=74)

96-76-4 Manufacturing (coke, transportation equipment, chemicals and chemical products, machinery and equip-
ment, fabricated metal products, petrochemical, plastics material and resin); Fuel additives; Lubricants
and additives; Solvents (for cleaning or degreasing); Stabilizers; Antioxidants; Consumer Products
(Toys: PVCs); Personal Care Products (sanitary napkins)

3,5-Di-tert-butylsalicylic acid
(DF=64)

19715-19-6 NA

2,4-Dinitrophenol (2,4-DNP)
(DF=52)

51-28-5 Coloring agents; Uncoupling Agents; Pharmaceuticals; Cosmetics; Pesticides (biocides, inert ingredients)

Pyrocatecholb (DF=39) 120-80-9 Manufacturing (chemicals and chemical products, leather and related products, luggage, metal, radio, tel-
evision and communication equipment); Surface treatment; Process regulators; Coloring agents;
Pharmaceuticals; Cosmetics (hair dyes, cosmetics); Food additives (flavorings, food contact substances);
Pesticides; Human Metabolites

2 0-Hydroxyacetophenonec

(DF=6)
118-93-4 Manufacturing (chemicals and chemical products, basic pharmaceutical products); Pharmaceuticals; Food

additives; Consumer products (fragrances); Pesticides
4-Hydroxycoumarin (DF= 1) 1076-38-6 Pharmaceutical; Human Metabolites

Note: These listed compounds were confirmed with synthetic standards, with level-1 confidence in identification (Schymanski et al. 2014). Abbreviations: DF, detection frequency;
CASRN, Chemical Abstracts Service (CAS) registry number; CPCat, Chemical and Product Categories; PVC, polyvinyl chloride.
aCondensed information based on the cassettes obtained from the U.S. EPA’s Chemical and Product Categories (CPCat) database (Dionisio et al. 2015; U.S. EPA 2014). Underlined
categories are shared categories between at least two chemicals.
bChemicals being manufactured and/or imported into the United States with an aggregate volume of 10 million to 50 million pounds/year, according to the 2016 Chemical Data
Reporting (CDR) data (U.S. EPA 2017).
c3 0-Hydroxyacetophenone (CASRN: 121-71-1) and 2 0-Hydroxyacetophenone are isomers that cannot be distinguished based on retention time (RT) only via the current LC-QTOF/MS
analysis and was not listed in the table due to no information found on its uses from the CPCat database.
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difficult, potentially resulting in increased false negatives. Still,
false negatives could occur for chemicals with very low abun-
dance, even using the current parameters optimized for detecting
EOAs. For example, when running the reference standard of the
compound 4-Hexyloxyphenol, we found that the peak of this com-
poundmatched to a small unintegrated peak at RT=5:8 in our sam-
ple, but not the integrated (during the feature extraction step
performed by the Agilent MassHunter Qualitative Analysis soft-
ware) peak originally selected for confirmation at RT=4:8. False
negatives may also occur for EOAs that have short biological half-
lives. Last, our study ismoderately powered and thusmay not detect
demographic differences of suspect features, especially for nativity
(31 observationswithmissing and nonimputed data).

Our suspect screening method is a semitargeted approach,
where we can identify “known, unknown” environmental chemi-
cals present in pregnant women. This method enables us to search
for novel chemicals more effectively under the negative ionization
mode in the LC-QTOF/MS analysis by searching in a predefined
chemical space (EOAs), i.e., restricting feature extraction to com-
pounds with the same mass as those from chemicals in the EOA
database. However, the number of suspect features that we could
find depended on the number of chemical formulas included in the
current EOA database. In addition, some of the pesticide metabo-
lites in our EOA database were based on predictions and might not
exist or be the actual metabolite in human species.

We note that our EOA database consists of a fraction of the
environmental chemicals that can be detected in a LC-QTOF/MS
platform with a negative ionization mode and is an incomplete list
of all environmental contaminants with anticipated exposures in
pregnant women. For example, there are about 8,000 chemicals in
commerce whose production and use are in large quantities (U.S.
EPA 2016a), which could result in human exposures to these vari-
ous chemicals. In addition, we limited the application of our sus-
pect screening method to sera only. Nevertheless, our analysis
provides a demonstration of the novel methods that can be used to
more holistically scan and prioritize a large number of chemicals to
which different populations may be potentially exposed. Further,
our analysis reinforces the need to optimize suspect and nontar-
geted screening methods and to apply this approach to different
matrices (e.g., sera, urine, and other tissues) to more fully charac-
terize human exposure to a wide array of environmental chemicals.

Although similar suspect screening approaches have been
used for environmental monitoring studies (Rager et al. 2016;
Sjerps et al. 2016; Zhou et al. 2012), only a limited number of
studies have focused on human samples (Hernández et al. 2009;
Liotta et al. 2010; Plassmann et al. 2015). To our knowledge, our
findings are the first from a suspect screening of serum from
pregnant women. We combined chemical and statistical analysis
to create a proof-of-concept tool for identifying novel chemicals
for further study in four steps: (1) perform chemical analysis
using LC-QTOF/MS, (2) identify suspect features by matching
suspect peaks to a curated chemical database and performing
peak review and isomer grouping, (3) prioritize suspect candi-
dates for further confirmation based on a set of criteria, and (4)
confirm selected suspect candidates by running their reference
standards. Our method used visual inspection to reduce false pos-
itives, and we performed isomer grouping based on RT to allow
for separation of suspect features. Our method also included in-
formation from our cohort to help prioritize chemical confirma-
tion, in this case demographic data. This general workflow can be
tailored to meet the needs for screening and identifying novel
chemicals that are of interest to researchers in a larger population
of interest. This study also provides a more comprehensive pic-
ture of the potential presence of environmental organic acids in a
racially and economically diverse population of pregnant women.

Our study serves as an important starting point to apply a sus-
pect screening approach to identify prevalent novel environmental
chemical exposures in biospecimens from pregnant women. We
anticipate that as the analytic methods mature, we will have a com-
plementary approach that can be integrated with targeted methods
to identify and prioritize chemical analyses. Suspect screening
may also serve as amethod for biomonitoring certain known chem-
icals upon further confirmation. For example, we identified previ-
ously that ≥ 99% of U.S. pregnant women sampled in the
NHANES were exposed to at least 43 different chemicals, with a
portion of these women exposed to at least 139 chemicals out of
the 163 evaluated (Woodruff et al. 2011). One of the suspect candi-
dates (not confirmed) that was detected among all 75 women in our
current study― perfluorooctane sulfonic acid (PFOS)―was
also highly detected among pregnant women in NHANES (2003–
2004 cycle) (Woodruff et al. 2011) and among a similar study pop-
ulation of pregnant women from University of California, San
Francisco (UCSF) whose samples were collected between 2010
and 2011 (Morello-Frosch et al. 2016). Also, suspect candidates
(not confirmed) 4-tert-Octylphenol andmono-2-ethylhexyl phthal-
ate (MEHP) were prevalent among the U.S. pregnant women
(detected in 69% and 89% of the samples based on the NHANES
2003–2004 data) (Woodruff et al. 2011) and had relatively high
DFs in our sample (Table 2), albeit the matrix is different (urine in
the NHANES versus serum in our study). Yet, the suspect candi-
date (not confirmed) perfluorooctanoic acid (PFOA) had a relatively
low detection frequency in our sample (16%) compared to the detec-
tion frequencies based on targeted methods in the NHANES study
(99%) and our previous UCSF study (66%). Thismay be due to both
a lower sensitivity of the QTOF/MSmethod than the targeted analy-
sis used in NHANES and differences in the timing of biospecimen
collection (samples collected were collected in 2014–2016 for this
study versus 2003–2004 for NHANES). We will further assess the
value of the suspect screening approach as we develop targeted ana-
lytical methods for the six novel EOAs we confirmed in this study.
Follow-up studies will quantify their serum levels in a cohort of 200
women and examine the association between these EOAs and preg-
nancy outcomes, including birth outcomes, and as well as develop-
mental effects in offspring.

To further enhance the utility of this suspect screening method,
we are pursuing several areas of improvement. First, we are devel-
oping more systematic approaches, including scoring methods
similar to the ToxPi approach (Rager et al. 2016; Reif et al. 2010),
which will integrate additional metadata (e.g., demographic or out-
come information derived from the study cohort) into our chemical
prioritization process. Second, we will expand suspect screening to
both positive and negative ionization modes that will allow for
evaluation of a broader set of “known, unknown” chemicals.
Concurrently, we are using chemical information and resources
from the U.S. EPA’s CompTox Chemical Dashboard (McEachran
et al. 2017) to expand our chemical database. Third, we are incor-
porating the use of open-source packages into our workflow to
improve feature detection (Smith et al. 2006; Tautenhahn et al.
2008; Uppal et al. 2013) and better annotation (matching suspects
to specific chemicals) (Edmands et al. 2017; Uppal et al. 2017) for
analyzing a larger number of samples.

Conclusions
We reported the novel findings from a proof-of-concept suspect
screening biomonitoring approach that identifies an average of 56
suspect EOAs in maternal serum, with six confirmed EOAs that
may be of high priority for future biomonitoring among pregnant
women. Based on this study, we find that suspect screening is a val-
uable supplement to existing targeted biomonitoring methods as it
offers efficient high-throughput capacity to identify and prioritize
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novel chemicals for future biomonitoring studies and will be im-
portant to assess exposure to the thousands of chemicals registered
for commercial use in the United States. Characterizing and further
quantifying previously unidentified environmental chemical expo-
sures can provide critical guidance to the selection of chemicals for
in vitro and in vivo studies to assess health risks as well as to future
epidemiologic studies.
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